If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25k^2=12-5k
We move all terms to the left:
25k^2-(12-5k)=0
We add all the numbers together, and all the variables
25k^2-(-5k+12)=0
We get rid of parentheses
25k^2+5k-12=0
a = 25; b = 5; c = -12;
Δ = b2-4ac
Δ = 52-4·25·(-12)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-35}{2*25}=\frac{-40}{50} =-4/5 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+35}{2*25}=\frac{30}{50} =3/5 $
| 3-(6+2x)=13 | | 8x-35=2x-5 | | 29(z-1)=16 | | -6x-20=1-9-x | | -2x+8+9x=29 | | 12y^2+42y=-18 | | 9(8m+3)-8=662 | | 12+(9-g)=26 | | C=0.4n+1.80 | | 11u+4u-14u-4+2u+1=3 | | (3x-8)(3x-2)=0 | | 2x+12=8-3x | | 6.3=22.3+b | | Y+9=8y-5 | | 5n+27=180 | | 5^2x+3=48 | | 20+x+12+12x+18=180 | | 4n+18=180 | | x^2-19=13 | | 5n+13=180 | | 33x+35=180 | | 31-(2c+3)=+2(c+4)+c | | 85+5x+7=8+17x | | x^2+10=94 | | x+2x+2x+4x=18 | | 85+5x+7=8x+17 | | 36w=3600 | | Y/3+y/6=4/9 | | 85+5x+7=8x+17x | | (x+10)+(4x-55)=180 | | 2+6x+28=9x-3 | | -49m-10=81 |